

Part 3: Conventional and Emerging Technology Applications for Utilizing Landfill Gas

Presented by:

Linda Nutting SCS Engineers

June 25, 2001
Training Workshop
Sao Paulo, Brazil

Presentation Outline

- Direct Gas Use/Sale
- Electricity Generation
- Pipeline Upgrades
- Leachate Evaporation
- Micro Turbines
- Vehicle Fuel
- Fuel Cells
- Greenhouses
- Other Technologies
- Conclusions

- Local, available fuel source
- Easy to capture and use
- Source of renewable energy
- Constant supply, 24 hours a day, 7 days a week
- Reliable technologies exist for using landfill gas
- Uses a source of energy that otherwise would have been wasted
- Helps the environment by reducing uncontrolled emissions of landfill gas

Direct Gas Utilization

- Gas piped to a nearby customer for use in boiler
- I 18 projects in the US
- Pipeline length range
 from .6 5 kilometers
 - less than 3km is most feasible
- Gas used on-site

Cleaver Brooks 20,000 lb/hr Boiler

- Advantages
 - Simple technology
 - Minimal processing requirements
 - Most cost effective
- Disadvantages
 - Requires locating a customer within close proximity of the landfill
 - Right of way permits
 - Local terrain not conducive to pipeline installation

- US\$1.50 (3.57 Real) to \$3.50 (8.33 Real) per MMBtu, depending on:
 - Pipeline length
 - Collection system in-place at landfill
- Other costs
 - Boiler retrofit
 - Operation and Maintenance

Electricity Generation

- Most prevalent in the US
 - In US, 900 MW from over 200 operational projects
- Electricity sold to utility of nearby customer
- Average project size:kW 50 MW
- Technologies
 - Internal Combustion (IC)Engine, I-3MW
 - Gas Turbine, 3-10MW

Advantages, Disadvantages and Costs: IC Engine

- Advantages
 - low cost
 - High efficiency
 - most common technology
- Disadvantages
 - Problems due to particulate matter buildup
 - Corrosion of engine parts and catalysts
 - High NOx emissions
- Costs
 - US\$1,100-1,300 (\$/kW)
 (2600 3100 Real per kW)

Advantages, Disadvantages and Costs: Gas Turbine

- Advantages
 - Corrosion resistant
 - Low O&M costs
 - small physical size
 - Low NOx emissions
- Disadvantages
 - Inefficient at part load
 - High parasitic loads, due to high gas compression requirements
- Costs
 - US\$1,200-1,700 (\$/kW)
 - (\$2800 4000 Real per kW)

Pipeline Quality Gas Upgrade

- Gas is upgraded to a medium or high quality gas product
- Injected into a natural gas pipeline
- Generally at landfills with greater gas flows
- II operational projects in the US

Advantages, Disadvantages and Costs

Advantages

- All gas recovered from the landfill is used
- Cost effective for landfills with high volumes of gas
- Beneficial in areas where natural gas prices are high

Disadvantages

- Extensive treatment of landfill gas
- Additional quality control requirements
- Higher capital costs
- Higher compression of gas is required

Costs

US\$3.60 to \$4.15 per MMBtu (\$8.60 to 9.90 Real per MMBtu)

Leachate Evaporation

- Utilize LFG to treat leachate
- Commercially available technology
- Units operating in the US and internationally

Advantages

- Applicable to landfills that have limited leachate treatment options and high leachate disposal costs
- Proven technology
- Meets local air quality requirements
- Disadvantages
 - More expensive than traditional landfill leachate treatment options
 - Generally applicable to larger landfill sites

- Capital Cost
 - 10,000 gpd facility: US\$295,000 (702,100 Real)
 - 20,000 gpd facility: US\$485,000 (1,154,000 Real)
- O&M Cost
 - 10,000 gpd facility:
 US\$70,000 (166,600 Real)
 - 20,000 gpd facility: US\$95,000 (226,100 Real)

Vehicle Fuel

- Compressed landfill gas (CNG)
- Liquefied landfill gas (LNG) -CryoFuels®
- Early stages of commercial development

Advantages

LNG/CNG price lower than diesel fuel cost

- Reduction in use of fossil fuels
- Reduce local ozone pollution
- Disadvantages
 - Very small percentage of alternative-fuel vehicles
 - Vehicle conversion costs
 - Limited track record of performance

- Retrofit vehicles
 = \$3,500 to
 \$4,000 (8,300 to
 9500 Real) per vehicle
- Fueling station = \$1,000,000(2,380,000 Real)
- Fuel price = \$.48
 to \$1.26 (1.15 to
 3.50 Real) per
 gallon

Micro Turbines

- A high speed turbocharged generator that produces stationary power
- Has been used in aviation for some time
- Available in sizes ranging between
 25kW to 75 kW

Advantages

- Low emissions
- Multiple fuel capability
- Light weight/small size
- Does not require any pretreatment of the fuel
- Lower maintenance costs

Disadvantages

- Low efficiencies
- Has been tested mostly for natural gas applications
- Limited track record of performance

- Capital Cost
 - \$700 to \$1200 (1660 to 3350
 Real) per kW
 - Cost is expected to reduce to half in the next five years
- O&M Cost
 - < \$0.01 (0.02 Real) per kWh</p>

Fuel Cells

- Chemically convert gas to electricity
- Demonstration phase technology

Advantages

- Advantages
 - Low emissions
 - Reduction in use of fossil fuels
- Disadvantages
 - High cost
 - Limited track record of performance

- Approximately \$3,000 (7140 Real) per kW
- 200 kW demonstration unit at California landfill = US\$1.5 million (3,500,000 Real)

Greenhouses

- Applicable to smaller landfills
- Produce high purity carbon dioxide

Advantages

- Meets energy needs of greenhouse
- Increasing competition and shrinking profit margins shifts focus to energy efficiency
- Cost effective production of warm weather crops in otherwise cost-prohibitive growing seasons

Disadvantages

- Requires locating a greenhouse in close proximity of a landfill
- Seasonal variability

- A project in the U.S. estimated that it costs US\$4.80 (I I.40 Real) per MMBtu
- Limited cost information is available

Technologies of the Future

- Thermal Hybrid Electric (THE)
 Sun Dish
 - Dual "fuel" Stirling-cycle engine
 - Combines solar and LFG power
 - Research and development scale technology

- Advantages
 - High-efficiency solar system
 - Low emissions
 - Reduction in use of fossil fuels
- Disadvantages
 - High cost
 - Limited track record of performance
 - Only suitable for certain locations
 - Small output capacity

 Not commercially available at this time

- Many ways to beneficially utilize LFG
- Available niche technologies range from research and development stage units to commercially available systems
- Technologies exist for low and high volumes of LFG production
- Selection of technology is project specific

Summary, continued....

- Key Selection Considerations Include:
 - Environmental performance
 - Reliability
 - Accuracy of assumptions
 - Permitting issues
 - emissions
 - Cost

